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ABSTRACT

Improving the sample efficiency of deep reinforcement learning (DRL) agents has
been an ongoing challenge in research and real-world applications. Self-attention,
a mechanism originally popularized in natural language processing, has shown
great potential in enhancing sample efficiency when integrated with traditional
DRL algorithms. However, the impact of self-attention mechanisms on the sam-
ple efficiency of DRL models has not been fully studied. In this paper, we ponder
the fundamental operation of the self-attention mechanism in visual-based DRL
settings and systematically investigate how different types of scaled dot-product
attention affect the sample efficiency of the DRL algorithms. We design and eval-
uate the performance of our self-attention DRL models in the Arcade Learning
Environment. Our results suggest that each self-attention module design has a
distinct impact on the sample complexity of the DRL agent. To understand the
influence of self-attention modules on the learning process, we conduct an inter-
pretability study focusing on state representation and exploration. From our initial
findings, the interplay between feature extraction, action selection, and reward col-
lection is influenced subtly by the inductive biases of the proposed self-attention
modules. This work contributes to the ongoing efforts to optimize DRL architec-
tures, offering insights into the mechanisms that can enhance their performance in
data-scarce scenarios.

1 INTRODUCTION

Deep reinforcement learning (DRL) (Arulkumaran et al., 2017; Li, 2017; François-Lavet et al., 2018)
is a branch of machine learning (Jordan & Mitchell, 2015) that combines the art of decision-making
of reinforcement learning (RL) (Sutton, 2018) with the representation learning capabilities of deep
neural networks (Goodfellow et al., 2016). It has made tremendous progress in advancing AI for
its ability to solve complex sequential decision-making problems that traditional algorithms strug-
gle with, especially in environments with high-dimensional sensory inputs and where the optimal
solutions are unknown or difficult to model explicitly. This makes DRL particularly well-suited for
tasks like robotics (Morales et al., 2021; Ibarz et al., 2021), game-playing (Mnih, 2013; Mnih et al.,
2015; Silver et al., 2018; Vinyals et al., 2019), autonomous vehicles (Kiran et al., 2021), healthcare
(Yu et al., 2021), and financial markets (Hu & Lin, 2019; Hambly et al., 2023), where agents must
learn and adapt from experience without being directly programmed with rules. However, one of
the key challenges in DRL is sample inefficiency (Yu, 2018; Yarats et al., 2021). DRL algorithms
often require an extensive amount of interactions with the environment to learn effectively, making
them computationally expensive and time-consuming. In real-world applications, especially where
data collection is costly or time-constrained (e.g., robotics or medical treatments), this inefficiency
becomes a major bottleneck. Addressing the sample inefficiency issue is crucial to improving the
practicality and scalability of DRL algorithms, driving research into methods that can enhance learn-
ing efficiency with fewer training samples.

State-of-the-art approaches to improve sample efficiency in DRL focus on several strategies, includ-
ing sample reuse such as experience replay (Fedus et al., 2020) and prioritized experience replay
(Schaul, 2015), model-based reinforcement learning (Kaiser et al., 2019; Schrittwieser et al., 2020;
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Hafner et al., 2020; Schwarzer et al., 2020; Micheli et al., 2022; Kapturowski et al., 2022; Moerland
et al., 2023), transfer learning (Spector & Belongie, 2018; Yang et al., 2021; Liu et al., 2021; Zhu
et al., 2023), meta-learning (Sung et al., 2017; Liu et al., 2019; Rakelly et al., 2019; Franke et al.,
2020; Beck et al., 2023), and leveraging advanced neural network architectures (Chen et al., 2021;
Schwarzer et al., 2023). Recently, self-attention mechanisms (Vaswani, 2017), commonly used in
natural language processing (like in Transformers (Han et al., 2022)), have been applied to DRL
to enhance sample efficiency (Manchin et al., 2019; Shen et al., 2019; Hu et al., 2019; Chen et al.,
2020; Fernandes et al., 2023). While most of the existing approaches focus on integration techniques
of self-attention in DRL, we ponder the fundamental question of how the scaled dot-product atten-
tion proposed in the original Transformer (Vaswani, 2017) can be optimally devised for visual-based
DRL tasks. Specifically, we take a closer look at how applying dot product over different dimensions
of the query, key, and value tensors affects the sample efficiency of the DRL algorithms.

In this work, we focus on investigating the underlying operation of the self-attention mechanism
and its impact on sample efficiency by designing various self-attention modules and evaluating them
with a baseline RL algorithm in the Arcade Learning Environment (ALE) (Bellemare et al., 2013;
Machado et al., 2018). Our results indicate that each self-attention module influences the agent’s
learning process differently, driven by its unique inductive bias (Baxter, 2000; Utgoff, 2012; Goyal &
Bengio, 2022). Furthermore, we perform an interpretability study to provide better insights into how
various self-attention modules influence sample efficiency through the lens of state representation
and exploration. Our initial observations suggest that self-attention modules can introduce artifacts
that subtly impact the agent’s learning process. We picture the proposed self-attention modules in
Section 4, illustrate the experiment setup, and present the main results in Section 5.

2 RELATED WORK

In the field of DRL, improving sample efficiency has been a critical research focus. Most re-
cent works try to tackle the sample efficiency challenge via model-based RL (Hafner et al., 2020;
Schwarzer et al., 2020; Micheli et al., 2022; Kapturowski et al., 2022) where agents build a model
of the environment to simulate interactions, reducing the need for actual interactions. Although
model-based RL has made significant progress in lowering the sample complexity, it comes with
notable limitations such as model inaccuracy, high computational cost, and limited applicability in
real-world environments (Doll et al., 2012; Clavera et al., 2018; Pong et al., 2018).

Considering the limited literature on improving sample efficiency through self-attention, we focus on
the most relevant research related to our study in this section. In Manchin et al. (2019)’s work, self-
attention has been integrated with the Proximal Policy Optimization (PPO) algorithm (Schulman
et al., 2017) to address the sample complexity issue and has shown great potential in setting new
state-of-the-art results in the ALE benchmark. Specifically in the context of ALE, the input sequence
is a stack of images, and the query, key, and value are generated by applying a 1× 1 Convolutional
Neural Network (CNN) kernel over the feature maps of the first CNN layer. The scaled dot-product
attention is then computed between the query, key, and value to generate the attention maps. The
attention maps are then element-wise summed with the feature maps from the first CNN layer before
being passed to the second CNN layer. The work further explored various ways of integrating the
self-attention block and evaluated their performances over 40 million time steps across 10 games
using 3 random seeds. Our work differs from it in multiple perspectives. Firstly, we focus on the
fundamental operation of self-attention in terms of the dimensions where the scaled dot-product
should be applied. Secondly, we evaluate our proposed self-attention agents over 10 million time
steps across 56 games with 5 runs per game. Thirdly, we provide insights into how self-attention
influences the agent’s learning process in terms of state representation and exploration with the
consideration of the inherent inductive biases of the self-attention modules.

3 PRELIMINARIES

3.1 PPO

Proximal Policy Optimization (PPO) (Schulman et al., 2017) is a model-free, policy gradient RL
algorithm that has become the de facto choice for many RL tasks due to its data efficiency, reliability,
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and scalability. It builds upon the TRPO algorithm (Schulman, 2015) with the key improvement of
enabling multiple epochs of minibatch updates. PPO is typically implemented using an actor-critic
framework where the actor is the policy network that selects actions and the critic is the value
network that estimates the value of a state or state-action pair. The critic helps guide the actor by
providing more accurate value estimates, improving learning efficiency. To encourage exploration,
PPO often includes an entropy term in the objective. Higher entropy indicates more randomness
in the agent’s action selection, which can prevent premature convergence to suboptimal policies.
Considering PPO’s general advantages over other RL algorithms, we choose PPO as the baseline
agent for evaluating the performance of our proposed self-attention modules.

3.2 SELF-ATTENTION

The self-attention mechanism is a core component in many modern neural networks, particularly in
architectures like the Transformer (Vaswani, 2017), and it is widely used in tasks such as natural lan-
guage processing (NLP), computer vision, and more recently, reinforcement learning. Self-attention
(a.k.a. intra-attention) refers to the mechanism where a sequence element attends to other elements
within the same sequence. It computes relationships between all pairs of elements in the sequence,
allowing the model to capture dependencies regardless of the distance between them. Specifically,
the self-attention proposed in the Transformer is termed the scaled dot-product attention which is
the primary focus of this paper. We outline the mathematical formulation of the scaled dot-product
attention in the context of NLP as follows.

• For each input element in a sequence, generate the query, key, and value vectors as q,k,v
with the key vector having the dimension of dk

• For the entire sequence, pack all the queries, keys, and values into matrices as Q,K,V

• Compute the attention scores matrix as Attention(Q,K,V ) = softmax(
QKT

√
dk

)V

It is important to note the differences between the self-attention formulation in the general NLP
settings (like the one defined here) and the self-attention formulation proposed by Manchin et al.
(2019). The fundamental difference lies in how query, key, and value are generated and those 3
components are no longer represented as matrices but as 3D tensors in the latter case. This key
change in the representation of the query, key, and value catalyzes the core direction of our research.

4 DESIGN OF SELF-ATTENTION MODULES

Inspired by Manchin et al. (2019)’s work, we embark on a study to explore the impact of various
forms of scaled dot-product attention on the sample efficiency of the PPO algorithm. As depicted in
Figure 1, each self-attention module encircled by the dashed line is positioned between the first and
the second CNN layers within the state representation block (a.k.a. feature extractor) of the PPO
framework. The key reason for placing the self-attention module at such a location is to enhance
computational efficiency and preserve interpretability. To shed more light on this, positioning the
self-attention module before the first CNN layer would result in higher computational costs due to
the high dimensionality of raw observations, and placing it after the second CNN layer would reduce
interpretability, as features become more abstract at this stage.

Zooming into each self-attention module, the query Q, key K, and value V tensors are generated
individually by applying a 1 × 1 CNN kernel over the feature maps F1 at the first CNN layer H1.
As a result, the dimensions of Q, K, and V match those of F1, including the channel, row (height),
and column (width) dimensions. We vary the design of self-attention modules by permuting the
dimensions of the query, key, and value tensors, allowing the scaled dot-product attention to be
applied across different dimensions. We designate the proposed self-attention modules according to
the dimensions over which the dot product is performed. For simplicity, we omit the term “self”
from “self-attention” for all modules.

• Spatial-wise-Attention (SWA): dot product is applied over the row and column dimensions
and repeated along the channel dimension
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Figure 1: Design of self-attention modules. Each self-attention module enclosed by the dashed
lines is placed between the first and the second CNN layers within the state representation block of
the PPO’s network architecture. The query Q, key K, and value V tensors are generated individually
by applying a 1 × 1 CNN kernel over the feature maps F1 produced at the first CNN layer H1.
Specifically in CWRA and CWCA, the order of the dimensions of the query, key, and value tensors
is permuted such that the scaled dot-product attention is applied over different dimensions. The
outputs of SWA, CWRA, and CWCA labeled as Y are subsequently reshaped into Ŷ which has the
same shape as the feature maps F1 before the element-wise summation. Particularly in CWRCA,
the outputs of CWRA and CWCA are reshaped into ŶR and ŶC respectively (both having the same
shape as F1) before being summed. The attended feature maps F̂1 produced by the sum of F1 and
Ŷ are then passed to the second CNN layer H2 for state representation. The complete network
architecture of PPO is presented in Appendix A.

• Channel-wise-Row-Attention (CWRA): dot product is applied over the channel and row
dimensions and repeated along the column dimension

• Channel-wise-Column-Attention (CWCA): dot product is applied over the channel and
column dimensions and repeated along the row dimension

• Channel-wise-Row-Column-Attention (CWRCA): this is simply the element-wise sum of
the outputs of CWRA and CWCA

Note that the permutation operation is done before and after the scaled dot-product attention in
CWRA and CWCA modules where the post-permutation (i.e., reshaping of Y into Ŷ) ensures that
the final attention maps Ŷ are compatible with the feature maps F1 before the element-wise sum-
mation. For ease of comparison, we denote the baseline PPO algorithm as NA which stands for
No-Attention and illustrate its architecture in Appendix A. We argue that each self-attention module
has its own inductive bias when integrated with the baseline algorithm and plays a distinct role in
the RL feedback loop. In the context of ALE, every environment has its unique game mechanics.
We believe that whether the inductive bias of the self-attention module would enhance or impair
learning is highly dependent on the game mechanics of the environment. For example, the CWRA
module assumes attending features lie in the channel, and the row dimensions could benefit the
agent’s learning. In other words, agents equipped with the CWRA module could learn faster in
games with rewarding objects moving along the column dimension, i.e., larger variance or higher
degree of dynamics exist in the horizontal direction of the game screen. On the contrary, agents
equipped with the CWCA module may learn faster in games with rewarding objects moving along
the row dimension, i.e., larger variance or higher degree of dynamics present in the vertical direction
of the game screen. We highlight the observations that generally support this belief in Section 5.
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5 EXPERIMENT

This section documents the experiment’s setup, presents the main results, and discusses the key
findings.

5.1 EXPERIMENT SETUP

To assess the impact of the proposed self-attention modules on sample efficiency, we compare the
performance of self-attention-enabled agents with that of a baseline agent using the well-established
ALE benchmark. Specifically, each agent is trained for 10 million time steps across 56 games with
5 random seeds using the RL Baselines3 Zoo v2.0.0 (Raffin, 2020; Raffin et al., 2021) training
framework. We detail the hyperparameters used in Appendix B for reproducibility.

5.2 RESULTS AND ANALYSIS

Evaluation Methodology We follow the best practices recommended by Agarwal et al. (2021)
for reliable evaluation of the agent’s performance. In particular, we report performances with 95%
stratified bootstrap confidence intervals (CIs) based on human normalized scores (HNS). To compute
HNS, we obtain the performance of a random agent score random and the performance of an
averaged human player score human from Badia et al. (2020) and normalize the performance of

our agents score agent using HNS =
score agent− score random

score human− score random
. In addition, we use the

mean evaluation score over the entire evaluation period instead of the last evaluation score for score
normalization and stratified bootstrapping. The reason is twofold: 1) The mean evaluation score
over the entire evaluation period favors sample efficiency whereas the last evaluation score favors
the final performance; 2) Using the mean evaluation score over the entire evaluation period for
stratified bootstrapping generally results in smaller CIs than those generated using the last evaluation
score. Since all agents share the same underlying algorithm (PPO) and differ only in their feature
extractors (particularly the self-attention modules), we anticipate minor performance variations due
to the stratified bootstrapping process. Backed by the no-free-lunch theorem (Wolpert et al., 1995;
Wolpert & Macready, 1997; Baxter, 2000), we present evaluation results using the sample mean and
standard error per game to better illustrate the impact of each self-attention module’s inductive bias
within specific game environments. To reduce statistical uncertainty, the mean evaluation score over
the entire evaluation period is used to calculate the sample mean and standard error.

0.30 0.36 0.42 0.48
NA

SWA
CWRA
CWCA

CWRCA
Median

0.39 0.42 0.45 0.48

IQM

1.44 1.52 1.60 1.68

Mean

0.510 0.525 0.540 0.555

Optimality Gap

Human Normalized Score

Figure 2: Aggregate performance (Agarwal et al., 2021). The median, interquartile mean (IQM),
mean, and optimality gap based on human normalized scores (HNS) of each agent are shown with
95% stratified bootstrap confidence intervals (CIs) from left to right. We focus on the IQM and
optimality gap in favor of their robustness and statistical efficiency. Although most CIs overlap
under each metric, the CWCA agent achieved a higher IQM score and a lower optimality gap, and
the CWRCA agent showed lower overall performance across all metrics.

Overall Performance with Stratified Bootstrap CIs The aggregate performance, sample effi-
ciency curves, and performance profiles of all the agents are depicted in Figure 2, 3a, and 3b re-
spectively. The average probability of improvement between any of the two agents can be found in
Appendix C. In general, we observe relatively small differences in agents’ performances, likely due
to the shared baseline algorithm used across designs. This implies that the proposed self-attention
models and the baseline model have similar overall performance when all 56 games are considered.
Nevertheless, the CWCA agent exhibits slightly better performance in terms of IQM (the higher the
better), optimality gap (the smaller the better), and sample efficiency (the higher the better) whereas
the CWRCA agent demonstrates relatively inferior performance in terms of all evaluation metrics.
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Figure 3: Sample efficiency curves (left) and performance profiles (right) (Agarwal et al., 2021).
Sample efficiency of the agents is represented using IQM human normalized scores at selected time
steps over the entire evaluation period. Shaded regions show point-wise 95% stratified bootstrap
CIs. The CWCA agent demonstrated slightly higher sample efficiency, consistent with its IQM
performance as presented in Figure 2. The performance profiles are plotted based on score distribu-
tions. Although the score distributions of all agents look similar at first glance, the profiles intersect
at multiple points where τ ∈ [1, 4] which implies that there is no stochastic dominance among all
agents. In other words, each agent could perform differently in different games.

Another observation from the performance profiles highlights the performance delta among agents
over a specific range of HNS thresholds (i.e., τ ∈ [1, 4]). We argue that although the stratified boot-
strapping process aims to provide more reliable evaluation results by accounting for uncertainty in
the few-run regime (Agarwal et al., 2021), it could fade the manifestation of agents’ unique charac-
teristics in specific games, such as their inductive biases. This is likely true in our context where all
agents share the same underlying learning mechanism, i.e., the PPO backbone.

Inductive Biases and Game Mechanics In the pursuit of discovering the effect of inductive
biases of the proposed self-attention modules, we include the performance of the agent per game
in Appendix D. For each game, we compute the sample mean and standard error using the mean
evaluation score over the entire evaluation period across 5 runs. Based on the highest sample mean,
we select the winning agent per game and summarize the list of games won by each agent. Since
there is no quantitative way to measure the game mechanics and the inductive biases of the self-
attention modules, we intend to correlate these two concepts in an empirical and heuristic manner.
For each self-attention-enabled agent, we choose the game where the agent exhibits a relatively
higher winning margin in terms of the sample mean and a relatively lower standard error as the
representative game to study the relationship between the inductive bias of the self-attention module
and the game mechanics. We present the list of the representatives in Figure 4 and the complete list
of games won by each agent in Appendix E.

Tennis ChopperCommand Zaxxon Hero

Figure 4: Inductive biases and game mechanics. The representative games selected for the SWA,
CWRA, CWCA, and CWRCA agents are shown from left to right.

Tennis can be considered as a fully observable game (Kapturowski et al., 2022) with most of the
features and dynamics available in the spatial domain, i.e., the row and column dimensions, and has
a relatively static background (lower dynamics in the channel dimension). We hypothesize that the
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SWA module could ‘exploit’ its inductive bias more naturally in the Tennis environment to obtain
higher rewards. ChopperCommand is a horizontally scrolling shooter. We observe that both the
chopper and the targets are mostly moving horizontally which could be ‘leveraged’ by the CWRA
module with its inherent attention over the channel and row dimensions. In contrast to ChopperCom-
mand, Zaxxon is a vertically scrolling shooter. The vertical movements of the spaceship, targets,
and fortresses could be ‘taken advantage of’ by the inductive bias of the CWCA module. As for the
CWRCA module, intuitively, it could ‘combine’ the strengths of both CWRA and CWCA modules.
Albeit having the most complex design, it excels in the game of Hero where the rescuer traverses
down a mineshaft avoiding enemies and hazards, and destroying walls to rescue trapped miners.
Heuristically, Hero is a highly exploratory game that demands attention or curiosity in all directions.
We conjecture that the CWRCA module could encourage exploration by creating state representa-
tion with high entropy (Vuckovic et al., 2020; Zhao et al., 2021). We show some observations that
could underpin this hypothesis in Section 5.3.

(a) The Pong game

S
co
re

Timesteps (in Million)

3

(b) Learning curves in Pong

Figure 5: The Pong game (left) and the learning curves in Pong (right). For learning curves, solid
lines represent the mean performance, and the shaded regions indicate the 95% confidence intervals
across 5 runs. Model checkpoints are selected at the 3 million time step for interpretability study.

5.3 INTERPRETABILITY STUDY

To further understand how self-attention modules influence the sample efficiency of the baseline
algorithm, we suggest interpreting the inner workings of the self-attention mechanisms from the
perspectives of state representation and exploration. Without loss of generality, we selected the
Pong game for our initial case study for the following reasons.

• Pong has a simple state space where the game features two paddles (left and right), a ball,
and two walls (top and bottom) as shown in Figure 5a. The Pong game simulates table
tennis where the left paddle is manipulated by the game emulator and the right paddle is
controlled by a learning agent. Having a simple state space, features or artifacts created by
the self-attention modules could be spotted easily.

• Pong also has a relatively small action space with a total of 6 default actions, namely,
‘NOOP’ (no operation, do nothing), ‘FIRE’, ‘RIGHT’ (move the paddle up), ‘LEFT’ (move
the paddle down), ‘RIGHTFIRE’, and ‘LEFTFIRE’. Specifically in Pong, ‘FIRE’ has the
same effect as ‘NOOP’, ‘RIGHT’ is equivalent to ‘RIGHTFIRE’, and ‘LEFT’ is equivalent
to ‘LEFTFIRE’. This further reduces the action space to 3 distinctive actions which could
ease our analysis.

• In addition, the learning curves depicted in Figure 5b exhibit a clear separation among
agents, especially between the CWCA and the rest of the agents. We believe that the more
distinguishable the learning curves, the larger the distinction in agents’ state representations
and behaviors. Under this assumption, we select the model checkpoint at the 3 million time
step (indicated by the dashed line) where we observe a relatively large variation in agents’
performances. For each agent, we pick the saved model from a specific run whose learning
curve resembles its mean performance the most and use that saved model to reproduce the
agent’s behaviors at that particular checkpoint. We summarize the learning curves of all
games in Appendix F.
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Observations (4 Frames)

Heatmaps at the First CNN Layer

Attended Feature Maps

Heatmaps at the Second CNN Layer

CWCA NA SWA CWRA CWRCA

Best Actions Selected LEFTFIRE LEFTFIRE NOOPNOOPLEFTFIRE

Agents

Figure 6: State representation. The heatmaps are generated using Grad-CAM (Selvaraju et al.,
2016) and the attended feature maps are generated via element-wise summation between the atten-
tion maps and the feature maps at the first CNN layer. The attended feature map of the NA agent
(i.e., the baseline agent) is blank because it does not contain any self-attention module. The arti-
facts created by the self-attention modules are most noticeable in the attended feature maps of the
CWRCA agent where horizontal and vertical bars can be observed. We hypothesize that these arti-
facts could slow down the learning process of the CWRCA agent because the agent needs to learn
to disentangle patterns that are naturally present in the game scene and created by the self-attention
modules. The heatmaps and the attended feature maps of all observations are provided in Appendix
G.

State Representation To visualize the state representation and its correlation with the agent’s
behavior, we make use of the Grad-CAM (Selvaraju et al., 2016) to generate the gradient-weighted
feature maps (denoted as heatmaps) at the first and the second CNN layers where the gradient is
back-propagated from the logit of the ‘best’ action selected by the agent. To visualize the effect of
self-attention modules in the feature space, we extract the attended feature maps F̂1 (as indicated
in Figure 1) which are the element-wise sum of the attention maps Ŷ and the feature maps F1

generated at the first CNN layer. To better understand the feature extraction process, 10 unique sets
of observations are selected using a random policy and fed into the trained agents to retrieve the
heatmaps and the attended feature maps. In favor of simplicity, we pick one set of observations
and organize corresponding heatmaps and attended feature maps from each agent in Figure 6. The
observations comprise four consecutive frames that depict the ball’s movement from the center to
the bottom right of the screen where the agent is located at the top right corner. In this situation, a
human player would start to move the paddle down, i.e., pick the action ‘LEFT’ or ‘LEFTFIRE’ to
catch the ball to avoid losing the score. Looking at the heatmaps at the first CNN layer and the best
action selected by each agent, all agents could highlight the state information including the ball, the
paddles, and the walls except for the CWRA agent which focused more on the walls. The difference
in the heatmap is likely caused by the less optimal action chosen by the CWRA agent in the sense
that ‘doing nothing’ at this moment will probably lead to a score loss later. It is counter-intuitive
that the CWRCA agent chose the same action ‘NOOP’ but with the ‘right’ state representation.
This implies that the CWRCA agent may not have fully grasped the correct correlation between the
optimal action and the current state.

Based on the attended feature maps, the SWA and the CWRA agents focused more on the walls
whereas the CWCA agent paid equal attention to all the key objects in the scene. An interesting
phenomenon observed is the creation of artifacts (patterns not naturally present in the game scene)
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from the self-attention modules. Different self-attention modules seem to create different patterns
of artifacts according to their dot product operations. The artifacts created by the CWCA mod-
ule resemble a horizontal bar (like walls) whereas artifacts created by the SWA module resemble
multiple vertical bars (like ‘transposed’ walls). Likewise, artifacts created by the CWRCA module
contain both horizontal and vertical patterns. We notice that such artifacts seem to be present in
the heatmaps of the second CNN layer as well, especially for the SWA and CWRCA models. It is
shown that self-attention modules are capable of creating various patterns of artifacts based on the
game scenes and the artifacts could behave like a double-edged sword in the sense that they can in-
fluence an agent’s learning both positively (e.g., when artifacts overlay with the actual features) and
negatively (e.g., when artifacts ambiguate the state representation). In the context of Pong, vertical
artifacts seem to do more harm to the learning likely because the model has to learn to disambiguate
between the artifacts and the actual paddles and walls. The negative impact of these vertical artifacts
is manifested by the slower learning curves of both SWA and CWRCA models as shown in Figure
5b. Nevertheless, the introduced artifacts could promote exploration in the way that the agent takes
more random actions because of the ambiguity and randomness in the state representation. This can
be a good trait when solving hard-exploration games like Montezuma’s Revenge and Hero (Kaptur-
owski et al., 2022) where the CWRCA agent obtained a higher mean evaluation score as depicted in
Appendix D.

Table 1: Mean standard deviation of actor logits.

Types of agents CWCA NA SWA CWRA CWRCA

σ̄ of actor logits 4.0 2.91 4.29 2.65 2.65

Exploration Following the same setup we have for the state representation study, we evaluate the
degree of exploration based on the distributions of the logits of the actor network (a.k.a. the actor
logits). Particularly in the context of PPO, the actions are sampled from a multinomial distribution,
and the determinism of the action selection process depends on the distribution of the actor logits.
For example, when logits are more evenly distributed (with lower variance), the action selection
process becomes more random. Conversely, as the variance among logits increases, resulting in a
more peaked distribution, the action selection process becomes more deterministic. In this study, we
provide a simple and effective metric, i.e., the mean standard deviation of the actor logits to evaluate
the degree of randomness of the policy. Specifically, for each agent, we compute the standard
deviation of the actor logits per observation and then calculate the mean standard deviation over 10
sets of randomly selected observations. As depicted in Table 1, the CWRA and the CWRCA agents
have the lowest mean standard deviation scores implying that these two agents are more exploratory
than other agents at the three million time step. This could explain why both agents chose the less
optimal action ‘NOOP’ as illustrated in Figure 6. Based on our observations from the interpretability
study, it is evident that the inductive biases of the self-attention modules can influence the agent’s
sample efficiency in terms of state representation and exploration.

6 CONCLUSION

In this research, we investigated the fundamental operation of the self-attention mechanism in visual-
based DRL settings. Specifically, we designed various self-attention modules by permuting the di-
mensions where the scaled dot-product operation is applied. We integrated the proposed designs
with the PPO algorithm and evaluated their sample efficiency using the ALE benchmark. Our re-
sults indicate that different self-attention modules affect the agent’s learning process differently,
primarily due to the unique inductive bias of each self-attention module and the game mechanics.
To understand how self-attention modules influence the sample efficiency of an agent, we perform
an interpretability study through the lens of state representation and exploration. Our initial obser-
vations revealed that self-attention modules can generate artifacts that subtly influence the interplay
between feature extraction, action selection, and reward collection. We believe that this work has
made certain contributions to the ongoing efforts in optimizing DRL architectures, offering insights
into the mechanisms that can enhance their performance in the low-data regime.
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In the future, self-attention modules proposed in this work could be integrated and evaluated with
other DRL algorithms and frameworks such as value-based RL algorithms and model-based RL
respectively. It could also be interesting to combine various self-attention modules adaptively, es-
pecially in the context where the environment dynamics are unknown. Another promising research
direction would be designing new self-attention or hybrid-attention mechanisms to enable more ef-
ficient and effective learning agents.
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A NETWORK ARCHITECTURE

CNN Layer H1 CNN Layer H2 State
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Linear Layer L1
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Figure 7: Network architecture of PPO (Schulman et al., 2017). The input observations comprise
four consecutive frames of the game-play with each frame having a size of 84× 84. The frames are
processed by the first CNN layer H1 which contains 16 kernels with each kernel having a size of
8× 8 and a stride of 4. The feature maps generated by H1 are subsequently processed by the second
CNN layer H2 which has 32 4 × 4 kernels with a common stride of 2. The feature maps generated
by H2 are then flattened before being passed to the linear layer L1 of size 256. The outputs of L1
are forwarded to the actor network and the critic network for action selection and value estimation
respectively. In this work, all the proposed self-attention modules are inserted between H1 and H2
to investigate their impacts on sample efficiency against the PPO baseline. The ReLU activation
layer (Agarap, 2018) after each CNN and linear layer is not drawn explicitly in this figure.

B HYPERPARAMETERS

Table 2: PPO hyperparameters. α is linearly annealed from 1 to 0 over the entire training period.
We used the default values from the Stable-Baselines3 v2.0.0 (Raffin et al., 2021) for hyperparame-
ters not listed here.

Parameter Value

No. of parallel environments (n envs) 16

Horizon (n steps) 128

No. of epochs (n epochs) 3

Minibatch size 16× 16

Total timesteps (n timesteps) 1e7

Frame skipping 4

Frame stacking 4

Max no. of no-ops 30

Action repeat probability 0

Learning rate 2.5× 10−4 × α

Clipping parameter 0.1× α

Value function coefficient 1

Entropy coefficient 0.01

Seeds 0, 1, 10, 42, 1234
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C PROBABILITY OF IMPROVEMENT
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Figure 8: Probability of improvement (Agarwal et al., 2021). From top to bottom and from left
to right, we demonstrate algorithm X’s average probability of improvement over the other algo-
rithms where algorithm X is represented by the NA, SWA, CWRA, CWCA, and the CWRCA agent
respectively. Based on the top left sub-figure, the PPO baseline is more likely to outperform any
self-attention models in a randomly selected game based on the mean evaluation scores. However,
the chance of outperforming the CWRA and the CWCA agents by the PPO agent in any game is
much less certain, implying that the self-attention models could perform better in certain games. In
addition, IQM shown in Figure 2 serves as a more robust aggregate metric for sample efficiency.
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D PERFORMANCE PER GAME

Table 3: Performance per game. In total, 56 games are evaluated over 10 million time steps across
5 seeds with all games having the ‘NoFrameskip-v4’ suffix in their environment IDs. The sample
mean and standard error are computed using the mean evaluation score over the entire evaluation
period across 5 runs. The ‘winner’ of each game is highlighted in bold based on the highest sample
mean. Although the baseline agent has the highest number of wins, the combined impact of self-
attention models (33 wins) is nontrivial and it is worth investigating how the inductive bias of each
self-attention module influences the performance of the agent in different environments.

Game NA SWA CWRA CWCA CWRCA

Alien 713.25 ± 23.93 783.05 ± 33.57 820.38 ± 55.90 796.17 ± 25.60 761.62 ± 27.09

Amidar 233.81 ± 17.10 194.72 ± 7.87 249.74 ± 18.04 219.80 ± 19.40 258.99 ± 24.00

Assault 1206.73 ± 81.79 1447.24 ± 145.57 1391.12 ± 150.19 1105.14 ± 30.39 1187.06 ± 141.38

Asterix 2190.20 ± 62.24 2115.20 ± 120.97 1850.88 ± 53.40 1881.16 ± 107.32 1751.08 ± 44.01

Asteroids 1694.04 ± 44.22 1613.50 ± 41.29 1519.31 ± 60.69 1540.75 ± 53.98 1515.91 ± 25.78

Atlantis 748152.32 ± 7500.59 706351.92 ± 8465.67 742176.56 ± 7568.71 717543.44 ± 15934.30 687103.60 ± 12713.27

BankHeist 282.67 ± 99.69 271.21 ± 96.26 291.63 ± 71.99 300.24 ± 79.89 289.53 ± 111.95

BattleZone 18500.80 ± 1010.68 15742.40 ± 831.53 17180.80 ± 1230.39 17376.00 ± 1091.82 14099.20 ± 1112.86

BeamRider 2473.49 ± 169.54 2035.45 ± 88.45 2394.04 ± 98.61 2238.17 ± 70.47 2001.04 ± 212.50

Berzerk 744.35 ± 28.95 783.36 ± 29.50 859.44 ± 11.41 738.88 ± 28.79 821.95 ± 30.29

Bowling 37.08 ± 1.39 42.24 ± 3.00 39.27 ± 3.15 43.77 ± 3.17 35.87 ± 2.61

Boxing 32.44 ± 1.67 27.90 ± 4.80 41.50 ± 2.62 44.44 ± 6.78 25.96 ± 3.52

Breakout 49.17 ± 2.54 38.55 ± 1.92 40.71 ± 2.99 42.61 ± 1.84 42.29 ± 5.29

Centipede 3171.62 ± 49.00 3103.86 ± 34.70 3107.74 ± 70.54 2980.11 ± 102.51 3231.28 ± 56.19

ChopperCommand 1795.84 ± 86.32 1614.56 ± 22.34 1909.92 ± 72.07 1609.76 ± 47.24 1536.64 ± 90.13

CrazyClimber 83603.20 ± 2103.07 79674.88 ± 2573.49 82909.68 ± 1900.91 83995.60 ± 2277.56 78799.12 ± 670.93

Defender 13075.88 ± 421.91 12774.72 ± 483.22 12650.36 ± 701.04 15035.48 ± 679.71 14171.84 ± 656.77

DemonAttack 4276.36 ± 148.32 4526.02 ± 245.87 4430.51 ± 376.03 4059.09 ± 63.70 3695.32 ± 103.82

DoubleDunk -6.13 ± 0.31 -6.78 ± 0.32 -6.15 ± 0.22 -6.20 ± 0.29 -6.32 ± 0.14

Enduro 176.80 ± 43.35 162.52 ± 25.48 129.54 ± 32.08 112.26 ± 17.96 106.03 ± 35.66

FishingDerby -70.46 ± 3.11 -78.18 ± 1.37 -72.74 ± 2.99 -66.00 ± 2.19 -71.96 ± 2.20

Freeway 29.23 ± 0.28 28.73 ± 0.43 23.74 ± 4.05 24.33 ± 5.44 23.24 ± 5.20

Frostbite 270.59 ± 2.60 268.18 ± 2.46 279.81 ± 3.50 676.94 ± 364.66 266.51 ± 3.07

Gopher 893.97 ± 21.91 896.82 ± 28.77 954.93 ± 21.44 913.07 ± 18.05 917.46 ± 9.25

Gravitar 328.68 ± 20.12 318.76 ± 18.17 295.28 ± 8.63 299.40 ± 9.79 261.36 ± 8.32

Hero 9045.84 ± 116.65 8435.23 ± 393.62 9153.70 ± 280.52 9071.00 ± 282.13 9877.38 ± 145.04

IceHockey -4.78 ± 0.13 -5.06 ± 0.19 -4.93 ± 0.08 -4.97 ± 0.14 -4.90 ± 0.08

Jamesbond 609.08 ± 88.48 480.32 ± 14.36 693.60 ± 119.26 457.88 ± 14.61 452.44 ± 30.54

Kangaroo 1504.24 ± 272.96 1503.60 ± 181.72 1886.56 ± 291.60 1250.56 ± 103.63 1252.64 ± 292.68

Krull 5537.86 ± 196.97 4970.93 ± 149.33 5189.49 ± 107.28 5763.52 ± 166.26 5095.27 ± 185.98

KungFuMaster 17357.68 ± 700.29 17260.96 ± 1426.21 17050.72 ± 1425.88 17110.80 ± 725.67 13422.16 ± 1048.28

MontezumaRevenge 0.72 ± 0.49 0.40 ± 0.28 0.48 ± 0.18 0.48 ± 0.35 2.16 ± 1.25

MsPacman 772.44 ± 15.97 699.65 ± 10.00 717.33 ± 38.01 686.30 ± 23.43 669.47 ± 8.52

NameThisGame 5176.36 ± 79.77 4668.89 ± 81.98 5116.64 ± 81.12 4812.22 ± 223.28 4493.71 ± 178.70

Phoenix 4200.87 ± 103.45 4206.65 ± 185.15 4194.28 ± 52.70 4367.82 ± 92.50 4106.22 ± 142.62

Pitfall -7.66 ± 1.37 -16.36 ± 5.65 -28.05 ± 11.92 -10.73 ± 3.88 -11.98 ± 1.80

Pong 9.91 ± 0.53 8.32 ± 0.74 7.30 ± 1.60 12.64 ± 0.43 -0.02 ± 4.01

PrivateEye 93.06 ± 1.64 87.12 ± 9.55 88.90 ± 2.55 84.64 ± 2.99 109.90 ± 22.71

Qbert 1594.34 ± 74.58 1228.14 ± 63.00 1467.60 ± 87.12 1425.32 ± 128.60 1128.26 ± 93.87

Riverraid 4098.34 ± 319.24 4464.29 ± 101.54 4548.46 ± 177.25 4468.96 ± 268.44 3822.38 ± 252.04

RoadRunner 17679.60 ± 1207.69 14792.88 ± 1527.42 15625.60 ± 1066.88 15596.96 ± 541.54 13924.72 ± 1252.82

Robotank 15.76 ± 0.87 14.44 ± 0.64 14.27 ± 0.63 13.16 ± 0.64 10.28 ± 0.92

Seaquest 865.14 ± 2.13 845.89 ± 3.02 854.10 ± 3.70 851.44 ± 1.49 843.82 ± 4.34

Skiing -28852.89 ± 549.36 -21709.29 ± 4541.60 -21695.07 ± 4566.52 -17406.93 ± 4598.34 -13266.78 ± 3785.99

Solaris 2344.58 ± 47.87 2332.13 ± 70.77 2199.54 ± 43.66 2278.88 ± 43.55 2337.78 ± 78.62

SpaceInvaders 515.05 ± 8.99 532.38 ± 13.09 504.85 ± 9.32 516.86 ± 16.91 487.15 ± 5.81

StarGunner 8952.08 ± 569.54 8824.72 ± 509.83 9063.12 ± 587.46 9602.56 ± 468.26 8372.16 ± 919.90

Tennis -16.09 ± 2.41 -11.09 ± 1.75 -16.20 ± 1.74 -13.36 ± 2.31 -11.90 ± 0.85

TimePilot 4938.48 ± 148.33 4501.84 ± 154.27 4330.56 ± 194.76 4789.36 ± 145.20 4369.52 ± 190.30

Tutankham 160.79 ± 1.80 160.08 ± 2.57 156.58 ± 2.36 158.20 ± 1.88 156.87 ± 3.24

UpNDown 49361.81 ± 15012.83 35094.31 ± 1432.76 59758.81 ± 17960.40 64822.30 ± 15476.49 23096.82 ± 2146.71

Venture 13.12 ± 4.82 5.28 ± 2.34 8.16 ± 6.26 4.16 ± 2.06 3.68 ± 2.26

VideoPinball 25318.44 ± 287.01 25979.93 ± 654.44 25669.86 ± 885.77 24888.83 ± 899.18 25354.74 ± 833.24

WizardOfWor 3415.92 ± 168.71 3100.56 ± 229.14 3819.76 ± 145.49 3475.28 ± 294.38 3504.88 ± 134.35

YarsRevenge 13977.03 ± 1935.09 13141.56 ± 357.95 10376.39 ± 1936.01 15025.78 ± 523.89 13697.67 ± 582.27

Zaxxon 5381.20 ± 603.69 4293.04 ± 1237.78 5872.40 ± 619.70 6504.00 ± 498.32 5719.60 ± 828.21

No. of wins 23 5 8 14 6
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E GAMES WON BY EACH AGENT

The list of games won by each agent is curated based on the mean performance as shown in Ap-
pendix D. Although the sample mean is calculated from a few runs which presents a certain degree
of uncertainty as indicated by the standard error, we believe that there could exist a subtle correlation
between the inductive bias of each self-attention module and the game mechanics. In other words,
we aim to discover the commonality among all the games won by a particular agent which could
help us understand why such an agent can learn faster in these games but not in others.

Asterix Asteroids Atlantis BattleZone BeamRider Breakout DoubleDunk Enduro

Freeway Gravitar IceHockey KungFuMaster MsPacman NameThisGame Pitfall Qbert

RoadRunner Robotank Seaquest Solaris TimePilot Tutankham Venture

Figure 9: Games won by the NA agent. The NA agent depicted in Appendix A is the PPO baseline
without the self-attention module. The inductive bias of the state representation block primarily
arises from the CNN layers. Overall, there appears to be limited commonality among the games
won by the NA agent, likely due to its broad feature extraction capabilities from CNN.

Assault DemonAttack SpaceInvaders Tennis VideoPinball

Figure 10: Games won by the SWA agent. Compared with the baseline, the SWA agent contains
an additional self-attention module that performs the dot product operation over the row and column
dimensions and repeats it along the channel dimension. Although only 5 games are won by the
SWA agent, it seems that games with more static backgrounds (e.g., no scrolling of the game scene)
and fewer distinctive objects can be ‘taken advantage of’ by the SWA agent. For instance, both
VideoPinball and Tennis feature simpler backgrounds with fewer moving elements.
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Alien Berzerk ChopperCommand Gopher Jamesbond Kangaroo Riverraid WizardOfWor

Figure 11: Games won by the CWRA agent. The self-attention module possessed by the CWRA
agent carries out the dot product operation over the channel and row dimensions and repeats it along
the column dimension. We hypothesize that dynamics along the column (width) dimension could be
‘captured and utilized’ by the CWRA module naturally. For example, games with rewarding objects
moving horizontally such as Gopher, and horizontally scrolling games like ChopperCommand and
Jamesbond are won by the CWRA agent.

BankHeist Bowling Boxing CrazyClimber Defender FishingDerby Frostbite

Krull Phoenix Pong StarGunner UpNDown YarsRevenge Zaxxon

Figure 12: Games won by the CWCA agent. In contrast to the CWRA agent, the CWCA module
implements the dot product operation over the channel and column dimension and repeats it along
the row dimension. Intuitively, we assume that dynamics along the row (height) dimension could
be ‘leveraged’ by the CWCA module more effectively. Following this assumption, we observe that
games with rewarding objects moving vertically such as FishingBerby, Krull, and Pong as well as
vertically scrolling games like CrazyClimber, UpNDown, and Zaxxon are won by the CWCA agent.

Amidar Centipede Hero MontezumaRevenge PrivateEye Skiing

Figure 13: Games won by the CWRCA agent. Intending to combine the advantages of the CWRA
and the CWCA modules, the CWRCA agent integrates both modules via an element-wise summa-
tion operation. This could enable it to attend to dynamics along all dimensions. On the one hand,
attending to all dimensions could over-complicate the state representation and the agent may spend
more effort disentangling the patterns which slows down the learning process, like in the case of
the Pong game. On the other hand, attending to all dimensions could encourage exploration due to
the high entropy (e.g., noise) injected into the state space. This could increase the agent’s learning
efficiency, especially in hard-exploration games like Montezuma’s Revenge and Hero.
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F LEARNING CURVES PER GAME
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Figure 14: Learning curves per game. The solid line indicates the mean performance, while the
shaded region represents the 95% confidence interval over 5 runs. The term ‘SAT’ in the legend
field stands for Self-Attention Type which is detailed in Section 4.
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G STATE REPRESENTATION AND EXPLORATION
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Figure 15: 10 sets of random observations based on the Pong game. Each set of observations
comprises 4 consecutive frames and all sets of observations are generated by a random policy. The
seventh set of observations is used in the interpretability study.
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CWCA NA SWA CWRA CWRCA

Figure 16: 10 sets of heatmaps at the first CNN layer based on the Pong game. Each row pictures
the heatmaps of all agents at the first CNN layer based on the observations in Figure 15 and the best
actions in Table 4. The computation of the heatmap is illustrated in Section 5.3. In general, all
agents can correlate the key objects in the scene with their actions. The SWA and the CWRA agents
tend to highlight the walls more often than other agents.
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Figure 17: 10 sets of attended feature maps based on the Pong game. Each row depicts the at-
tended feature maps of all self-attention-enabled agents based on the observations in Figure 15. It
can be seen that different self-attention modules can create different artifacts. The artifacts created
by the SWA module resemble vertical bars whereas artifacts generated by the CWCA agent resem-
ble horizontal bars. Intuitively, the CWRCA module creates both horizontal and vertical bar-like
artifacts.
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Figure 18: 10 sets of heatmaps at the second CNN layer based on the Pong game. A key
distinction between the heatmaps from the first and second CNN layers is the emergence of artifacts
generated by the self-attention modules since the attended feature maps serve as inputs to the second
CNN layer. The presence of the artifacts could play a subtle role in influencing the agent’s learning
efficiency in terms of state representation and exploration which is discussed in Section 5.3.
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Table 4: 10 sets of best actions based on the Pong game. Each row represents the agent’s best
action (deterministic = True) corresponding to the input observations as shown in Figure 15. Model
checkpoints are selected at the 3 million time step as detailed in Section 5.3.

CWCA NA SWA CWRA CWRCA

1 NOOP LEFT FIRE NOOP NOOP

2 LEFT LEFTFIRE LEFTFIRE LEFT LEFTFIRE

3 LEFT LEFTFIRE LEFTFIRE LEFT LEFTFIRE

4 NOOP LEFTFIRE FIRE RIGHT NOOP

5 LEFT LEFTFIRE LEFTFIRE LEFT LEFTFIRE

6 RIGHT RIGHT RIGHTFIRE RIGHT RIGHT

7 LEFTFIRE LEFTFIRE LEFTFIRE NOOP NOOP

8 LEFT LEFT LEFTFIRE LEFT LEFTFIRE

9 LEFTFIRE LEFTFIRE LEFTFIRE LEFT LEFTFIRE

10 FIRE RIGHT RIGHT NOOP NOOP
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